
PHYSICAL REVIEW E 66, 066105 ~2002!
First-order transition of tethered membranes in three-dimensional space
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We study a model of phantom tethered membranes, embedded in three-dimensional space, by extensive
Monte Carlo simulations. The membranes have hexagonal lattice structure where each monomer is interacting
with six nearest-neighbors~NN!. Tethering interaction between NN, as well as curvature penalty between NN
triangles are taken into account. This model is new in the sense that NN interactions are taken into account by
a truncated Lennard-Jones potential including both repulsive and attractive parts. The main result of our study
is that the system undergoes afirst-order crumpling transitionfrom low-temperature flat phase to high-
temperature crumpled phase, in contrast with early numerical results on models of tethered membranes.
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I. INTRODUCTION

Statistical mechanics of membranes is a rich subject
has been studied since about twenty years. Motivation
obtain a full understanding of the behavior of these comp
systems are enforced by many experimental realizations.
recent reviews, see Refs.@1# and @2#. See also Ref.@3# for
many introducing and pedagogical courses on the subje

Membranes are two-dimensional fluctuating systems
monomers. According to their physical properties, me
branes can be ‘‘fluid’’ or ‘‘tethered.’’ Fluid membranes con
sist of freely moving monomers, i.e., with Hamiltonian d
pending only on the shape of membranes. On the contr
monomers in tethered membranes are tied together by a
ering potential and their connectivity is fixed. In addition,
membrane can be self-avoiding if intersections with itself
forbidden. Otherwise, it is a phantom membrane. In this
per, we focus our attention on a model of tethered me
branes with external curvature energy without se
avoidance.

Any realistic model should include self-avoiding intera
tions. But phase diagrams of phantom membranes are
and contribute to understand the behavior of self-avoid
membranes@4,5#. It is now firmly established that phantom
membranes undergo a crumpling transition between a
and a crumpled phase. The flat phase possesses long-
orientational order between the normal to the surfa
whereas the crumpled phase is totally disordered. Howe
the nature of the crumpling transition is still puzzling. Ren
malization group~RG! calculations@6# with a Landau con-
tinuous model@7# predict a discontinuous phase transiti
when the dimensiond of the embedding space is lower tha
219, including the physical cased53. This continuous
model describes membranes asD-dimensional manifolds
with internal flat coordinates s, embedded in a
d-dimensional~euclidean! space, where the position ofs is
denoted byr (s). Tangentsta5]r /]xa are identified as the
order parameter of the crumpling transition, i.e.,
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^ta&50 in the crumpled phase

Þ0 in the flat phase.

Following a standard method, a free energy functionalF is
built for the $r (s)% by a Landau-Ginzburg expansion inta .
Moreover, rotational invariance is required. This leads to

F$r ~s!%5E dDs
t

2
~]ar !21

k

2
~]a]ar !21u~]a]br !2

1v~]ar]ar !21
b

2E dDs1E dDs2d (d)
„r ~s1!

2r ~s2!….

k is the bending rigidity, coupled to the square of the extr
sic curvature.t, u, andv are harmonic and anharmonic ela
tic coefficients.b is the coupling constant for self-avoidin
energy. Higher-order terms in the expansion are expecte
be irrelevant in the infrared limit.

In the phantom case (b50), continuous crumpling tran
sition is expected by mean-field arguments fort50. Taking
into account the fluctuations, long distance behavior can
obtainedvia renormalization group technics, using ane54
2D expansion. The authors of Ref.@6# calculated theb
functions to the lowest order ine. They found no stable fixed
point for d ~the dimension of the embedding space! less than
dc.219, interpreting this as a weak fluctuation-driven fir
order phase transition. However, this prediction may not
reliable in the physical case (d53,D52) corresponding to
e52.

On the other hand, numerical simulations of lattice mo
els @8–18#, larged expansion@19# and calculations based o
truncations@20# of the Schwinger-Dyson equations are co
sistent with a continuous phase transition.

In this paper, we try to shed light on this contradictio
with an extensive Monte Carlo~MC! study on a model of
phantom tethered membranes with bending rigidity. As
turns out, our results show that the crumpling transiti
within our model is of first order in agreement with the R
prediction of@6#.
©2002 The American Physical Society05-1
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Section II is devoted to a description of the model. O
method is described in Sec. III and the results are show
Sec. IV. Concluding remarks are given in the last section

II. THE MODEL

We consider a two-dimensional~2D! lattice of monomers
connected in hexagonal structure, and embedded in
physical 3d euclidean space. The tethering potential betwe
nearest-neighbor~NN! monomers is a truncated Lennar
Jones ~LJ! potential. The curvature energy is a standa
normal-normal interaction between NN triangles. The d
tance between NN monomers is not allowed to be larger t
an upper bound distanceRmax. Otherwise, in the absence o
Rmax, monomers are no longer effectively tethered at h
temperature and the system becomes a gas. In order to
essential features of the LJ potential,Rmax must be suffi-
ciently larger thanr 0, the NN distance corresponding to th
minimum of the potential, so thatRmax lies in the flat
asymptotic region of the potential. However, to have an
tual tethered membrane,Rmax should not be too large a
discussed above. Moreover, equilibration times increase
Rmax increases, since NN distances are then allowed to g
more and more.

The system is described by the Hamiltonian

H5(̂
i j &

U~r i j !2K (
^ab&

na•nb . ~1!

The first sum is performed on pairs of NN monome
^ i , j & only, and the second one is restricted to pairs of N
triangles ^a,b&. Tethering interaction between NN mono
mers labeled byi and j depends only on their distancer i j in
the 3d embedding space and is described byU(r i j ),

U~r i j !5UoF S r o

r i j
D 12

22S r o

r i j
D 6G if r i j ,Rmax

50 if r i j >Rmax, ~2!

with r i j 5ir i2r j i , r i andr j being the position vectors in th
3d space.r o is the equilibrium distance between NN mon
mers. The second term in Eq.~1! is the external curvature
energy, withK the bending rigidity. The 3d-vector na is
defined as the normal unit vector of thea th triangle formed
by three NN monomers. Note thatna is defined for a coun-
terclockwise oriented triangle.

The phase space of the model depends on three pa
eters. We fix two of them, namelyUo and K, and look for
temperature-dependent properties.

III. NUMERICAL METHOD

We consider a membrane of linear sizeL. The total num-
ber of monomers isN5L3L. We chooseUo53 and K
51. A more extensive study would require to explore t
complete phase space, but these particular values alr
give interesting results. In the following,K51 is taken as
unit of energy. We take alsokB51 ~Boltzmann constant! to
simplify the temperature unit. The NN distance in the grou
06610
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state is taken to be the unit of distance, i.e.,r o51, and the
upper boundRmax54. We use free boundary conditions,
constant pressure in our simulations.

The following algorithm was used. Starting from th
ground state where monomers are on the hexagonal la
sites, we heat the system to a temperatureT. We equilibrate
the system at variable volume. The local equilibration
done as follows: we take a monomer and move it to a nea
random position in a cubic box of volumed3 around its
position, in the 3d space. This position is accepted if it low
ers the energy. Otherwise it is accepted with a probabi
according to the Metropolis algorithm. We repeat this for
monomers: we say we achieve one MC step/monomer.
choosed.0.1 to have an acceptance of the order of 50%

We define the following physical quantities - averag
total energŷ E&, averaged normal vector^n&, averaged NN
distancê d&, radius of gyrationRg with the following stan-
dard definitions:

^E&5^H&, ~3!

^n&5
1

2~L21!2 K U(a naU L , ~4!

^d&5
1

~3L21!~L21! (
^ i , j &

^r i j &, ~5!

Rg
25

1

2L4 (
i , j

^~r i2r j !
2&, ~6!

where^•••& indicates thermal average and the sum in^d& is
performed only on NN links.

All the results described below are obtained after therm
ization of the system. This requires about 106–107 MC
steps/monomer, depending on the temperature. After t
malization, measures are done on 106–107 MC steps/
monomer, depending also on the temperature.

Error bars are calculated using a standard jack-kn
algorithm.

FIG. 1. Averaged energy versus temperature, forN516316,
24324, 32332, and 48348.
5-2
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IV. RESULTS AND ANALYSIS

At low temperature, equilibrium configurations are co
figurations of minimum energy. This means that NN distan
must be close tor o , the minimum of the LJ potential, an
that NN normals must be parallel to minimize curvature e
ergy. So, equilibrium states correspond to a flat state, w
^n&.1 andRg.L. It is an ordered phase.

At high temperature, maximal entropy configurations c
respond to crumpled states, where the membrane is com
and occupies a very small volume in the embedding spac
is a completely disordered phase, with^n&50 andRg!L.

Between low and high temperatures, a crumpling ph
transition is expected. In this work, we study the nature
this transition to see whether it is continuous or not.

As a first point, we measured^E&, ^n&, ^d& andRg versus
temperature for sizesN516316, N524324, N532332,
andN548348. Results are shown in Figs. 1, 2, 3, and 4

It turned out that equilibration times are very large for th
system. So, as we were interested in critical properties,
concentrated our work on the temperature region around
phase transition, especially forN548348. Figures 1, 2, 3,
and 4 clearly show a phase transition between a flat an

FIG. 2. ^n& versusT, for N516316, 24324, 32332, and 48
348.

FIG. 3. Averaged NN distancêd& versusT, for N516316,
24324, 32332, and 48348.
06610
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crumpled phase atT.1.1: there is a sharp jump of^E& from
the low-T flat phase to the high-T crumpled phase. Note tha
the slope of̂ E& increases with size in the transition regio
The order parameter^n& drops from a finite value~this value
would clearly tend to 1 asT tends to zero! to a vanishing
value, as expected for an order-disorder transition.

At the transition,Rg falls from a finite value dependent o
the linear sizeL to a small value more or less independent
L. This corresponds to the scalingRg;Ln, with n51 in the
flat phase andn50 ~indeed, a logarithmic dependence! in
the crumpled phase. It should be noticed that the NN d
tance remains finite in the crumpled phase, which means
monomers actually still form a tethered membrane even
the high-temperature phase as discussed earlier.

The second purpose of our work was to determ
whether the transition is continuous or not. A standa
method, when using numerical simulations, consists in a
nite size scaling analysis of the maximum of the specific h
Cv . For a second-order phase transition, it is expected
grow as the linear system size. For a discontinuous tra
tion, there are in principle discontinuities in thermodynam
quantities. However, for small systems, a discontinuo
phase transition can appear to be continuous if the corr

FIG. 4. Averaged gyration radiusRg versusT, for N516316,
24324, 32332, and 48348.

FIG. 5. Cv
max versusN in logarithmic coordinates, forN516

316, N524324, andN532332. The dashed line is the best fi
5-3
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tion length is greater than the linear size of the system
that case,Cv

max is expected to grow as the size of the syst
@21#.

We measuredCv
max for N516316, N524324, andN

532332 using the histogram technique@22#. For these
small sizes, energy histograms have a single peak for
temperatures we explored around the transition~multihisto-
gram method!. They are found more or less Gaussian.

In Fig. 5, we plotCv
max versusN in logarithmic scale.

Fitting these data, we obtainCv
max;Nx with x50.83(12).

This value is far from the valuex50.5 expected for a con
tinuous transition. It is closer to 1, the theoretical value fo
first-oder transition as discussed above. At this stage, in v
of this, we conjecture that the transition is of first order.
seen below this conjecture is confirmed by histograms m
for a larger size.

In order to check further the first-order character of t
transition, we increaseL. For largeL, if the transition is of
first order, the energy histogram should show a structure
multiple peaks corresponding to the coexistence of orde
and disordered phases at the transition. The system woul
back and forth between these phases resulting in a dou
peak energy histogram. TakingL548, we indeed observe
this double-peak histogram in the regionT.1.1, as shown in
Fig. 6. Note that above and below the critical region, t
double-peak structure is absent, as shown in Fig. 7. This
very strong signal which confirms the first-order characte
the crumpling transition found earlier by finite-size scali
of Cv

max.

FIG. 6. Normalized histogram for the energy, forN548348.
The double-peak structure shows the first-order character of
phase transition in the critical region (T51.11 andT51.12).
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V. CONCLUSION

We have studied the crumpling phase transition by M
simulation of a model of tethered membranes with LJ pot
tial energy and bending rigidity. We have shown clearly t
first-order nature of the phase transition between flat
crumpled phases, in contrast with earlier simulations us
Gaussian tethering interaction. Note that these early MC
sults @8–18# and also analytical calculations@19,20# show a
continuousphase transition for models which do not includ
anharmonic excitations. We believe that the anharmonic
ture of the LJ potential used in our model to some exte
contributes to the first-order transition observed here. We
not vary in this work the value of bending rigidityK. Let us
mention however that forK50, there is no flat phase, th
membrane is crumpled at allT.

It would be interesting to include self-avoidance betwe
non-nearest-neighbors in our model. However, it seems
in that case the precise form of NN potential is irrelevant:
repulsive self-avoidance between non-nearest-neighbors
membrane is always flat regardless of the form of the pot
tial between NN, even in the absence of bending rigid
@8,9,23,24# This is interpreted as an effective bending rigidi
induced by excluded volume effect. This can be overcome
an attractive interaction between non nearest-neighbor
addition to the repulsive self-avoiding interaction, leading
the folding of the membrane at lowT and a flat phase at high
T @25#. Including such repulsive and attractive interactio
between non-nearest-neighbors in our model is a formida
task which is left for future investigations.

he
FIG. 7. Normalized histogram for the energy, forN548348:

the single-peak structure above (T51.14) and below (T51.1) the
critical region.
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